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Falling charge in a gravitational 
field and radiation reaction
Paul Bracken 

The Lorentz–Dirac equation is formulated and studied in flat Minkowski spacetime. A concise, novel 
derivation of the equation is presented. The problem is then enlarged to study radiation damping of 
an electron moving through a gravitational field. The equation of motion is obtained for this case as 
well. It is suggested the study of the problem might motivate experiments which could shed light on 
the recent work related to the emergence of space-time and its structure by means of quantum effects 
such as quantum entanglement.
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It is well known that charges radiate when they undergo acceleration1. This fact was a major motivation for 
the development of quantum mechanics when the structure of atoms required electrons to circulate about a 
nucleus. In this picture electrons are restricted to orbitals around a nucleus. Since electrons in such orbitals can 
be thought to accelerate, they should radiate due to their confined localized motion. Classically then this means 
they accelerate and thus radiate energy. This does not take place, as atoms remain stable, and indicates that new 
physical laws, those of quantum mechanics, must be adopted to account for the structure of atoms. Accelerations 
are also produced as a result of the curvature of space-time. This curvature can result from a large concentration 
of mass such as that associated with a star. The curvature about this mass distribution is determined by Einstein’s 
equations. A mass distribution in some region of space-time is responsible for this curvature which creates the 
gravitational field. To study how electromagnetism and gravity are related, the problem of the falling charge 
treated classically in such a field may provide some information as to physics and gravity. This problem has been 
investigated classically before by DeWitt and Brehme as well as by Hobbs2–5. It would be worth returning to the 
idea in the hope of suggesting new experiments which could shed new light on current theories of spacetime. 
For example, the emergence of classically connected spacetimes has been proposed to be intimately related to 
the quantum entanglement of quantum particles. This might be the case since the radiation which is produced 
has a number of distinguishing characteristics.

The principle of equivalence which has been verified for neutral matter and the principle of covariance of 
physical laws constitute the basis for the general theory of relativity. Whether a falling charge radiates is like 
asking does the equivalence principle apply to charged matter. Originally the principle was never meant to apply 
other than in a local way to physical objects undergoing acceleration. A classical charge however is not strictly 
a local object when the Coulomb field is taken into account. The principle of equivalence is a local relationship 
which states that a gravitational force cannot be distinguished from a force that is inertial by means of an experi-
ment carried out locally.

The solution and study of the covariant scalar and vector wave equations

was initiated by Hadamard6. He tried to find a so-called elementary solution which, in the case of a 4-dimensional 
space-time is a bi-scalar of the form

where u,  v and w are bi-scalars which are free of singularities and satisfy the normalization condition 
limx→z u = 1.

Here the objective is to start off by reviewing Dirac’s 1938 paper on the classical radiating electron7 in which 
proceeds in a Lorentz covariant way. Next a development of the radiating falling charge problem is presented8 
which is hopefully concise and more comprehensible. Consider a charge in free space in a region with nonzero 
curvature and not near the masses generating it. When subjected to a force it accelerates and radiates a reac-
tive damping force in addition to its mechanical inertial force. It might be thought a charge placed in a static 
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gravitational field does not radiate under these conditions. However, an accelerated charge does not suffer a 
reactive damping force if its absolute acceleration is uniform. If a particle is far from a gravitating object it may 
be thought to be in a state of uniform motion and does not radiate. If it moves into a region with a strong gravi-
tional field the motion of the unaccelerated particle changes to a state of free fall, and it seems reasonable to say 
that a charged particle radiates as it moves through a region with a gravitational field.

The potential is the spacetime metric in general relativity and second derivatives of the metric tensor are 
involved in the Riemann tensor which describes the intrinsic space-time curvature or gravitational field. It can 
be said the charged particle attempts to satisfy the equivalence principle and it manages to do so locally. The 
particle however deviates from geodetic motion due to the Coulombic tail in the propagator function for the 
electromagnetic field. This enters nonlocally by appearing as an integral term over the past history of the particle. 
The Lorentz–Dirac equation in Minkowski spacetime is introduced here for a relativistic charge. This equation 
can be generalized without using a special coordinate system at any stage to the case in which the background 
spacetime is curved. In so doing, it is found that a tail function in the presence of nonzero curvature appears in 
the result7–10. The model is purely classical. However, the physical impact of the quantum vacuum is briefly men-
tioned at the end11–14. Different types of vacuum can exist. Unruh has shown that a uniformly accelerated observer 
whose acceleration is α , the Minkowski vacuum takes the appearance of a thermal state at a temperature a/2π . 
The charge sees the vacuum fluctuations as comoving and comprise a thermal bath. For a charge constrained to 
move with constant acceleration, there can be no net transfer of energy momentum between charge and vacuum 
as observed from the accelerated frame.

Electrodynamics in Minkowski space
An electromagnetic field Fαβ is generated by a charge e moving through a flat space-time on a world line zα(τ ) , 
where τ is the proper time associated with the particle. In what follows, the four-velocity uα(τ ) and acceleration 
aα(τ ) of the charge are defined as

The current jµ(x) associated with the charge is given by

The current jµ appears in the field equations for the particle

A general solution of this equation is can be given by using the Green function G(x, x′) for the operator � 
in (4),

If Aα
hom is any solution to the homogeneous equation then

In (6) G is the retarded Green’s function. The retarded and advanced Green’s functions are defined to be

To calculate the potential and field fully relativistically for a charge, the causal structure of the retarded 
Green’s function Gret(x, x

′) supported on the past light cone of the field point x is needed. Of course the field at 
x depends on the state of motion of the charge exactly where the world line intersects the past light cone. The 
past light cone can be used as a natural mapping between the field point x and a specific point z on the world 
line. Thus let x be the field point, z(u) the point where the world line intersects the past light cone of x. Thus u(x) 
denotes the specific value of the particle’s proper time τ corresponding to the intersection point. Thus u may be 
called the retarded time determined by x.

This implies x and z (u) are joined by a null geodesic. An invariant measure of the distance between x and z 
suggests that we consider the scalar quantity r(x) defined as

uα(τ ) =
dzα

dτ
, aα(τ ) =

duα

dτ
.

(3)jµ(z) = e

∫

dz uαδ(x − z).

(4)�Aα = −4π jα , � = ηαβ ∂α∂β .

(5)�G(x, x′) = −4πδ(x − x′).

(6)Aα(x) =

∫

G(x, x′) jα(x′) d4x′ + Aα
hom(x).

(7)

Gret(x, x
′) =

δ(t − t ′ − |x − x
′|)

|x − x′|
.

Gadv(x, x
′) =

δ(t − t ′ + |x − x
′|)

|x − x′|
.

(8)
1

2
ηαβ |x

α − zα(u)| · |xβ − zβ(u)| = 0.

(9)r(x) = −ηαβ [x
α − zα(u)] uβ(u).
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Since c has been set to one, r in (9) is the spatial distance between these two points. It is referred to as the 
retarded distance between the field point and the particle. As u is determined by x in (9), there is no need to 
make the dependence on u explicit so we write r(x) = r(x, u) . The vector x − z(u) is a null vector pointing from 
z (u) to x, and may be rescaled by the factor 1/r as,

Moreover kα in (10) satisfies

The retarded solution to the field equation (4) with current density (3) is,

To evaluate the integral in (12), a change of variable is made. We introduce dτ = dσ/σ̇ and since σ runs 
over negative to positive values as τ goes through the retarded time u, σ̇ is positive when τ = u . In fact 
σ̇ (τ = u) = r(x) . The vector potential in (11) is given by

This is usually called the Liénard–Weichert potential.
The electromagnetic field Fαβ is obtained from the scalar potential by regarding z and η to be independent 

variables and setting f (x) = F(x, u) under the light cone mapping. Suppose x is displaced to x + δx so the new 
intersection point is z(u+ δu) . These points are related by the condition σ(x + δx, u+ δu) = 0 . Expanding this 
to first order in δx, δu and using (11) gives the result kα δxα + δu = 0 or

By means of (14),

This is the differentiation rule under the light cone mapping. An application of (15) is to get the derivative of 
the retarded distance which we simply call rα,

where ak = aαk
α is the component of the acceleration aα in the direction of kα . We also have kα(x)rα(x) = −1 . 

Using uα,β = −aαkβ and (16), we obtain using ak = aαk
α that

The dependence of the world line quantities on the retarded time u has been suppressed. Square brackets in 
(17) denote antisymmetrization,

The energy-momentum tensor for the electromagnetic field is obtained by substituting Fαβ into it

In (19), the first term is the radiation component

where a2 = aαa
α and the Coulomb or bound component Tbnd is given by

(10)kα(x) =
1

r
[xα − zα(η)].

(11)kα(x)k
α(x) = 0, kα(x)u

α(x) = −1.
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∫
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.
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∂xα
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− kα

(
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.
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−

uβ(x)

r(x)2
r,α −

uα,β(x)
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+
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−
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+
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The decomposition (19) has the following properties for Tαβ

rad and Tαβ

bnd when r  = 0,

The interpretation of Tαβ

rad as the radiation part of the stress-energy tensor is motivated by the fact that it scales 
as r−2 and it is proportional to kαkβ.

The Lorentz–Dirac equation
The Lorentz–Dirac equation of motion for a charged particle under the influence of an external force as well as 
its own electromagnetic field is developed in flat space first. The world line of the particle is given by zα(τ ) . This 
gives the particle’s world line coordinates as a function of proper time.

Dirac’s derivation is based on consideration of energy-momentum conservation. The world-line of the charge 
can be placed within the world tube � . This can for example be a three cylinder in three space projected through 
time. It is desired to calculate how much electromagnetic field momentum flows across the surface per unit time. 
A change in the momentum flow must be balanced by a corresponding change in the particle momentum, so 
the total momentum is conserved.

The flux of the four-momentum across � is given by

In (23), Tαβ is any conserved stress-energy tensor, d�β the outward directed element on � . If �′ is a defor-
mation of � , the momentum flow through the deformed tube �′ is the same as through � provided the two 
tubes begin and end on the same two-surface. To see this, let �pα

′ be the momentum flow across �′ . Let V be 
the four-dimensional region between � and �′ with boundary ∂V which consists of the union � ∪�′ . By the 
theorem of Gauss

As the shape is irrelevant, let � be a hypersurface of constant r. Suppose r is small enough so the region lies 
close to the world line of the particle and d�α = rαr

2dud� is the outward directed surface element of a three-
cylinder with r constant in Minkowski space. Also rα = ∂r/∂xα is the gradient of r in any coordinate system xα.

From (20), the radial component of Tαβ

rad is

Consequently, the flow of the radiative momentum is

Note that r2 has cancelled out and (25) yields the rate of momentum change

since

Using these integrals and (u · a) = 0 we find that

This is the amount of radiative momentum crossing a surface r equal to a constant per unit proper time.
The radial component of the bound stress-energy tensor is given by

Using (27), the most singular terms at the end disappear upon integration, but the first term yields a non-
zero result,

This is the rate of change of the bound momentum.

(22)∂β T
αβ

rad = 0, ∂β T
αβ

bnd = 0.

(23)�pα =

∫

�

Tαβ d�β .

(24)� pα
′

−� pα =

∫

∂V

Tαβ d�β =

∫

V

T
αβ
,β dV .

T
αβ
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q2

4πr2
(a2 − a2k) k

α .

(25)�Pαrad =
q2

4π

∫

(a2 − a2k)k
α dud�.

(26)
dPαrad
du

=
q2

4π

∫

(a2 − a2k) k
α d� =

2

3
q2a2 uα ,

(27)
∫

kα d� = 4πuα ,

∫

kαkβ d� = 4π
(1

3
gαβ +

4

3
uαuβ

)

.

dPαrad
du

= e2
(

a2uα −
1

3
((a · u)aα + a2uα)+ 2(u · a)2uα

)

=
2

3
e2a2 uα .
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α −

3

2
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The rate of change of electromagnetic momentum is obtained by combining these two derivatives setting 
e2/2r = mem

It is now required that the total momentum pαem + pαmech be conserved

In (31), pαmech is the mechanical momentum of the particle itself. The idea is to identify the correct relation 
between pmech and the world-line quantities, so (31) becomes an equation of motion. To do this, another hypoth-
esis is required. If one identifies pαmech = m0 u

α , with m0 the particle’s material mass, one obtains aα proportional 
to the four-velocity. This is a nonsensical result because the acceleration cannot be proportional to the four-
velocity. If C is a dimensionless constant, a reasonable choice is

Combining (32) with (30) and (31), we obtain

Solving for aα and setting m = m0 +mem

If the right-hand side of (33) is to be orthogonal to uα , then with the identity a2 = −ȧα uα , it must be that 
C = −2/3 . Combining these results yields the Lorentz–Dirac equation

Here m is the physical mass of the particle, the material contribution plus the electromagnetic contribution.

Radiation damping of the electron in a gravitational fields
The objective is to derive the radiation damping term in the equation of motion in a curved space. The equation 
of motion of an electron in a curved space has been studied by DeWitt and Brehme4 as well as Hobbs5 by general-
izing Dirac’s procedure. This is done by computing the flux of the energy-momentum tensor across a thin tube 
that encloses the particle’s world line. Starting from the equation of motion

the idea is to apply a kind of analytic prolongation to (35) taking into account the retarded field. This is done 
by writing (35) as

Then (36) is expanded in powers of the small parameter τ0 . The divergent term that appears when τ0 → 0 is 
absorbed by a renormalization procedure similar to that used to arrive at (34). The equation of motion follows 
by taking the limit τ0 → 0 . It is shown the equation of motion for the electron can be obtained in a Riemann-
ian space this way. In a general space, covariance under arbitrary transformations of the coordinates must be 
maintained.

The characteristic function or world function σ(x, z) admits covariant expansions. The geodesic interval s 
gives the magnitude of the invariant distance between x and z as measured along the geodesic joining them. The 
world function is defined as

It is positive for space-like intervals and negative for time-like intervals. Indices α to κ are always associated to 
point z, and � to ω are associated with point x. The electron world line is given by a set of functions zα(τ ) where τ 
is the proper time. Dots over z denote absolute covariant differentiation with respect to τ in the following context,

or semicolen otherwise. The field Fµν is a bi-tensor that depends on the point x where the field is evaluated and 
on z which is the retarded point associated with x and is defined by

(30)dpαem
du

=
e2

2r
aα +

2

3
e2a2uα = mema

α +
2

3
e2a2uα .

(31)
d

du
(pαem + pαmech) = 0.

(32)pαmech = m0 u
α + Ce2aα .

mema
αaα +

2

3
e2a2uα =

dpαem
du

= −
dpαmech

du
= −m0a

α − Ce2ȧα .

(33)maα = −e2(C ȧα +
2

3
a2uα).

(34)maα =
2

3
e2
(

ȧα − a2 uα
)

.

(35)mz̈α = eFinαβ ż
β ,

(36)m0z̈
µ(τ + τ0) = e[Finµν (x = z(τ + τ0))+ Fµν (x = z(τ + τ0)), z(τ )]ż

ν(τ + τ0)

(37)σ = ±
1

2
s2.

(38)
żα =

dzα

dτ
, z̈α =

dżα

dτ
+ Ŵα

βγ ż
β żγ

żα żα = −1, żα z̈α = 0.
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DeWitt4 also introduces a bi-scalar � deined � = ḡ−1D where D and ḡ are the following determinants

The world function σ(z, x) associated to points x, z is the standard element on which expansions can be 
based. For a two tensor Tαβ whose indices refer to the same point z, and admits the expansion in covariant form

where s is the expansion joining x and z. The coefficients in (40) are ordinary local tensors at z. They can be 
determined from the equations

If a bi-tensor exists whose indices do not all refer to the same point z, such as the field Fµν , define a new tensor 
all of whose indices do refer to point z, with the help of the bi-vector of geodesic parallel displacement ḡµα and 
expand the new tensor by means of (40).

As (36) indicates, the field Fµν must be evaluated at x = z(τ + τ0) . The point z(τ ) is not the retarded one 
associated with x. The world function that appears in the expansions is associated with the geodesic that joins 
the points x = z(τ + τ0) and z(τ ) with expansion parameter τ0 . Due to this reason it is necessary to find the 
coefficients Aα ,Bα , . . . which appear in the following expansion

The coefficients Aα ,Bα , . . . are local vectors at z(τ ) . To this end, consider the following quantity

The geodesic of the world function on the left-hand side is the one that joins x(τ + τ0) and z(τ ∗) . The cor-
responding geodesic on the right the one joining x(τ ) and z(τ ∗) . As the derivatives σ̇α , σ̈α are evaluated at x(τ ) 
in covariant form, they are

The coefficients of (39) can be found from the following results

Letting x approach z in (43) and using (44) and (45) as well as symmetries of the Riemann tensor,

From this equation and (38), it follows that

Following a similar procedure, we can also define

To calculate the second term in (37), let us consider the expansion of the quantity

Based on the method outlined at the beginning, the results below are obtained in agreement with4,5

In (50), Rαβγ δ and Rαβ are the Riemann and Ricci tensors, respectively. From these, it then follows that

(39)σ(x, z(τ−)) = 0.

D = −| − σαµ|, ḡ = −|ḡαµ|

(40)Tαβ(x, z) = Aαβ + A
γ
αβσ;γ +

1

2
A
γ δ
αβ σ;γ σ;δ + O(s3)

(41)σ;µσ
;µ = σ;ασ

;α = 2 σ .

(42)σ;α(x(τ + τ0), z(τ )) = Aατ0 + Bατ
2
0 + Cατ

3
0 + O(τ 40 ).

(43)σ;α(x(τ + τ0), z(τ
∗)) = σ;α + σ̇ατ0 +

1

2
σ̈;ατ

2
0 +

1

6

...
σ ;ατ

3
0 + O(τ 40 ).

(44)σ̇α = σ;α ẋ
µ, σ̈;α = σ;αµν ẋ

µẋν + σ;αµẍ
µ,

...
σα = σ;αµνωẋ

µẋν ẋω + 3σ;αµν ẍ
µẋν + σ;αµ

...
xµ.

lim
x→z

σ;α = 0, lim
x→z

σ;αµ = −gµα , lim
x→z

σ;αµν = 0,

(45)lim
x→z

σ;αµνω = lim
x→z

ḡτα

(

2

3
Rτνµω −

1

3
Rτωµν

)

(46)σµα(x(τ + τ0), z(τ )) = −żατ0 −
1

2
z̈ατ

2
0 −

1

6

...
z α τ

3
0 + O(τ 40 ).

(47)κ = σ̇;α(x(τ + τ0), z(τ )) ż
α(τ ) =

(

1+
1

6
z̈2τ 20 + O(τ 30 )

)

τ0.

(48)κ̃ = σ;α z̈
α = −

1

2
z̈2τ 20 + O(τ 30 ), χ = σ;αβ ż

α żβ = −1+ O(τ 30 ).

(49)−κ−2σ;µαuνβ ż
α żβ .

(50)σ;µα = −ḡµα +
1

6
ḡδµR

δ
βαγ σ̇

βσ γ + O(s2), uνβ = (1−
1

12
Rαγ σ;ασ;γ + O(s3))ḡνβ ,
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Next interchange µ and ν to obtain

The difference between (51) and (52) can be computed, and it is given by

From (46) and (47), it follows that

This shows that −κ−2σ;µασνβ ż
α żβ does not contribute to (36) in the limit τ0 → 0 . Expanding the other 

terms, we have

To complete the expansions, the following results are needed

Consequently, the following expansion holds to order O(τ0)

Combining these equations with (57) and (58) and substituting into (36),

The Riemann tensor has disappeared because Rδαβη − Rδβαη is skew-symmetric in δ, η . The quantity ζµνα has 
been introduced and is defined to be

The definition of parallel displacement implies that

The coefficients on the right hand side of this are evaluated at the proper time τ . In light of (61) and the fact 
that ḡµα ḡµβ = δαβ when (59) is multiplied by ḡµα , we obtain

The following quantity appears in the result and needs to be simplified

(51)
σ;µασ;αβ ż

α żβ =

(

−ḡµα +
1

6
ḡδµR

δ
βανσ

;γ σ ;β + O(s2)

)

ḡνβ

(

1−
1

12
Rβ ′γ ′

σ;β ′σγ ′ + O(s3)

)

żα żβ

=

(

−ḡµα ḡνβ +
1

6
ḡµδ ḡνβR

δ
βαγ σ

;γ σ ;β +
1

12
ḡµα ḡνβR

β ′γ ′

σ;β ′σ;γ ′

)

żα żβ .

(52)σ;γ ασ;µβ ż
α żβ = (−ḡνα ḡµβ +

1

6
ḡνδ ḡµβR

δ
β ′αγ σ

;γ σ ;β ′

+
1

12
ḡνα ḡµβR

β ′γ ′

σ;β ′σ;γ ′) żα żβ .

(53)−(σ;µαu;νβ ż
α żβ − σ;νασ;µβ ż

α żβ) = −
1

6
(ḡµδ ḡγβ − ḡνδ ḡµβ)R

δ
βαγ σ

;γ σ ;β żα żβ .

(54)−κ2(σ;µαuνβ − σ;ναuµβ)ż
α żβ = O(τ0).

(55)

χκ−3σ;µuνα ż
α = (−1+ O(τ 30 )) τ

−3
0

(

1+
1

6
z̈τ 20 + · · ·

)−3(

−
1

2
z̈µτ

2
0 −

1

6

...
z µτ

3
0 + · · ·

)

·

(

1−
1

12
Rβγ σ;βσ;γ

)

ḡνα ż
α

(56)= −τ−3
0

(

−
1

2

...
z µτ

2
0 −

1

6

...
z µτ

3
0

)

ḡνα ż
α =

1

2
ḡµα ḡνβ

(

z̈α żβτ−1
0 +

1

3

...
z α żβ

)

+ O(τ0).

(57)

χκ−3(σ;µuνα − σ;νuµα)ż
α =

1

2
(ḡµα ḡνβ − ḡνα ḡµβ)(ż

α z̈βτ−1
0 +

1

3
zα

...
z β)+ O(τ0),

− κ2(σ;µuνα − σ;νuµα)(z̈
α − κ̃κ−1żα) = −ḡµα ḡνβ(ż

α żβτ−1
0 + O(τ0)),

− κ−1(σ;µuνα;β − σ;νuµα;β)ż
α = −

1

2
(ḡµα ḡνβ − ḡνα ḡµβ)

(

1

6
Rβ
γ ż

α żγ +
1

2
R
αβ
γ δ ż

γ żδ
)

+ O(τ−1
0 ),

− κ2(σ;µσνα;β − σ;νvµα;β)ż
α żβ = O(τ0),

κ−1(σ;µvνα − σ;νvµα)ż
α = −

1

2
ḡµα ḡνβ

(

Rβ
γ −

1

6
δβγ R

)

żα żγ + O(τ0).

(58)
∫ τ

−∞

(vµα;ν − vνα;µ)ż
α dτ = (ḡµα ḡνβ − ḡνα ḡµβ)

∫ τ

−∞

vαβγ (z(τ ), z(τ ′))żγ (τ ′) dτ ′ + O(τ0).

(59)

m0z̈µ(τ + τ0) = eḡµαFinµν(z(τ + τ0))z
ν(τ + τ0)+ e2(ḡµβ ḡνγ − ḡνβ ḡµγ )ż(τ + τ0)

(

−
1

2
żβ z̈γ τ−1

0 +
1

6
żβ

...
z γ −

1

3
R
γ
δ ż

β żδ +
1

2
R
β γ
δ η ż

δ żη +
1

2

∫ τ

−∞

ζ
βγ
δ (z(τ ), z(τ ′))żδ(τ ′) dτ ′ + O(τ0)

)

.

(60)ζµνα = vµα;ν − vνα;µ.

(61)ḡνβ ż
ν(τ + τ0) = żβ + z̈βτ0 + O(τ 20 ).

(62)

m0ḡ
µα z̈µ(τ + τ0) = eḡµαFinµν(z(τ + τ0))ż

ν(τ + τ0)

+ e2
(

−
1

2
τ−1
0 żα −

2

3
z̈2żα +

1

6

...
z α −

1

3
(Rβγ ż

α żβ żγ + Rα
β ż

β)+ żβ

∫ τ

−∞

ζ αβγ żγ (τ ′)dτ ′ + O(τ0)

)

.
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Hence upon using (62), we finally arrive at the result

Since the Riemann tensor is skew symmetric in the first and last indices δ, η , the tensor 
1/2(Rα

δ γ η − Rα
δγ η)ż

δ żη żγ must vanish. The term τ−1
0  is singular in the limit as τ0 approaches zero, but it can be 

absorbed in the mass by carrying out renormalization. To do so, the following procedure is adopted

Now (65) is written out in the form

To carry out this renormalization, it is necessary to move the singular term which contains τ−1
0  to the left 

hand side of (66), and combine it with the mass term m0 . To this end define the renormalized mass to be given 
as m = (m0 +

e2

2τ0
) . In the limit, let τ0 → 0 such that e2/τ0 remains finite. Doing so, the final form for the equa-

tion of motion is obtained

Consideration of the quantum vacuum
For a charge moving inertially at nonrelativistic velocity through a static gravitational field, it has been seen that 
the field in a neighborhood of the charge tends to fall freely with the particle. However, a local tidal distortion 
due to the presence of the Riemann tensor, the net retarding force caused by this distortion is zero integrated 
over solid angle. Deviation of the particle’s motion when Finµν = 0 is caused by a field which originates outside 
the classical radius. A nonlocal term comes about from a back scatter process where the Coulomb field of the 
particle, as it encounters bumbs in space-time, experiences jolts or hits which propagate back to the particle.

The classical analysis makes no reference to the state of the electrodynamic vacuum. There is the natural 
vacuum state for an extended massive body such as a neutron star. This may be thought of as a vacuum state 
which has come to equilibrium impressed by the action of the gravitational field. There is the Hartle-Hawking 
vacuum which corresponds to the natural vacuum of a black hole in a tiny neighborhood of it and corresponds 
to a black hole in equilibrium with a bath of blackbody radiation. Finally, there is the Unruh vacuum state, which 
would be related to a black hole produced by collapse of a star.

It may be thought that in the Hawking–Hartle vacuum, a charge fixed in the gravitational field of a black 
hole hence accelarated should not be able to extract energy from the freely falling vacuum fluctuations and 

(63)

e2(żγ + z̈γ τ0 + · · · )

(

−
1

2
żα z̈γ τ−1

0 +
1

6
żα

...
z γ −

1

3
R
γ
δ ż

α żδ +
1

2
R
α γ
δ η ż

δ żη

+
1

2

∫ τ

−∞

ζ
αγ
δ (z(τ ), z(τ ′)) żδ(τ ′) dτ ′ + O(τ0)

)

− e2(żβ + z̈βτ0 + · · · )

(

−
1

2
żβ z̈ατ−1

0 +
1

6
żβ

...
z α −

1

3
Rα
δ ż

β żδ +
1

2
R
βα
δ η ż

δ żη

+
1

2

∫ τ

−∞

ζ
βα
δ (z(τ ), z(τ ′))żδ(τ ′) dτ + O(τ0)

)

(64)

= e
2

(

−
1

2
ż
α
z̈
2 −

1

2
ż
α
z̈
2 −

1

3
ż
γ
R
γ
δ ż

α
ż
β +

1

2
R
α γ
δ η ż

γ
ż
δ
ż
η +

1

2
żγ

∫ τ

−∞

ζ
αγ
δ (z(τ ), z(τ ′)) żδ(τ ′) dτ ′

−
1

2
z̈
ατ−1

0 +
1

6

...
z
α −

1

3
R
α
δ ż

δ −
1

2
R
βα
δ η żβ ż

δ
ż
η −

1

2
żβ

∫ τ

−∞

ζ
βα
δ (z(τ ), z(τ ′))żδ(τ ′) dτ ′)

)

= e
2

(

−
1

2τ0
z̈
α −

2

3
ż
α
z̈
2 +

1

6

...
z
α −

1

3
R
γ
δ żγ ż

α
ż
δ −

1

3
R
α
δ ż

δ + żβ

∫ τ

−∞

ζαβγ (z(τ ), z(τ ′))żγ (τ ′) dτ ′

+ O(τ0).

(65)

m0ḡ
µα z̈µ(τ + τ0) = eḡµαFinµν(z(τ + τ0))ż

ν(τ + τ0)

+ e2
(

−
1

2τ0
z̈α +

2

3
(z̈α − z̈2żα)+

1

6

...
z α −

1

3
(Rβγ ż

α żβ żγ + Rα
β ż

β)+ żβ

∫ τ

−∞

ζ αβγ żγ (τ ′) dτ ′

+ O(τ0).

−
1

2

e2

τ0
ḡµα z̈µ(τ + τ0) = −

e2

2τ0
z̈µ −

e2

2

...
z µ + O(τ0).

(66)
m0ḡ

µα z̈µ(τ + τ0) = eḡµαFinµν(z(τ + τ0))ż(τ + τ0)−
e

2τ0
ḡµα z̄(τ + τ0)+

2

3
e2(

...
z α − z̈2żα)

−
1

2
e2(Rα

β ż
β + żαRβγ ż

β żγ )+ e2żβ

∫ τ

−∞

ζαβγ żγ (τ ′) dτ ′ + O(τ0).

(67)
mz̈α = eFinαβ żβ +

2

3
e2(

...
z α − z̈2żα)−

1

3
e2(Rα

β ż
β + żαRβγ ż

β żγ )

+ e2żβ
∫ τ

−∞

ζ αβγ z̈γ (τ ′) dτ ′.
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radiate contrary to the classical result. This does not occur due to the fact that in the Hawking–Hartle vacuum, 
the fluctuations are distributed with a thermal spectrum so that there can be no systematic exchange of energy 
between charge and field. It seems in all these cases, the classical result regarding radiation emitted and radiative-
reaction force on an electron in the various states of motion can be understood in terms of the spectrum of the 
field fluctuations apparent to the charge. The classical results could have been incorrect as the quantum equations 
differ from the classical by terms going like Planck’s constant or classical results for a type of motion only apply to 
just one of the three vacuum states but not to all. If there is duality between the radiation-reaction and vacuum-
fluctuation picture that the spectrum of the field fluctuations for a given motion and vacuum must accord with 
classical results. Thinking in terms of the Heisenberg equations make no reference to the state of the field, clas-
sical results have to apply with equal validity each of these distict vacuua, and this provides a connection to the 
equivalence principle. Also the decay of an atom can be viewed in terms of the electromagnetic field or as the 
consequence of the radiative self force of the electron, a link with the equivalence principle could be asserted.

Summary
An accelerated charged particle should emit radiation and hence suffer a reactive damping force, no matter what 
the nature of the acceleration. The equivalence principle forces an element of vagueness and uncertainty into the 
problem. Even though this work does not explicitly bring in quantum mechanics, it suggets that the observation 
of such radiation could imply new physics might be deduced with regard to spacetime. It would be of interest 
to see the results of experiments done according to the setup outlined here. The integral term appearing in (67) 
might reveal further information as to the physical nature of spacetime.
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